Stable Computation of Differentiation Matrices and Scattered Node Stencils Based on Gaussian Radial Basis Functions

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stable Computation of Differentiation Matrices and Scattered Node Stencils Based on Gaussian Radial Basis Functions

Abstract. Radial basis function (RBF) approximation has the potential to provide spectrally accurate function approximations for data given at scattered node locations. For smooth solutions, the best accuracy for a given number of node points is typically achieved when the basis functions are scaled to be nearly flat. This also results in nearly linearly dependent basis functions and severe ill...

متن کامل

Stable Computations with Gaussian Radial Basis Functions

Radial basis function (RBF) approximation is an extremely powerful tool for representing smooth functions in non-trivial geometries, since the method is meshfree and can be spectrally accurate. A perceived practical obstacle is that the interpolation matrix becomes increasingly illconditioned as the RBF shape parameter becomes small, corresponding to flat RBFs. Two stable approaches that overco...

متن کامل

Stable Gaussian radial basis function method for solving Helmholtz equations

‎Radial basis functions (RBFs) are a powerful tool for approximating the solution of high-dimensional problems‎. ‎They are often referred to as a meshfree method and can be spectrally accurate‎. ‎In this paper, we analyze a new stable method for evaluating Gaussian radial basis function interpolants based on the eigenfunction expansion‎. ‎We develop our approach in two-dimensional spaces for so...

متن کامل

Scattered Node Mehrstellenverfahren-type Formulas Generated from Radial Basis Functions

In standard equispaced finite difference (FD) formulas, symmetries can make the order of accuracy relatively high compared to the number of nodes in the FD stencil. With scattered nodes, such symmetries are no longer available. Thus, the number of nodes in the stencils can be relatively large compared to the resulting accuracy. The generalization of mehrstellenverfahren (compact) FD (CFD) formu...

متن کامل

Stable Computations with Gaussian Radial Basis Functions in 2-d

Radial basis function (RBF) approximation is an extremely powerful tool for representing smooth functions in non-trivial geometries, since the method is meshfree and can be spectrally accurate. A perceived practical obstacle is that the interpolation matrix becomes increasingly illconditioned as the RBF shape parameter becomes small, corresponding to flat RBFs. Two stable approaches that overco...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Scientific Computing

سال: 2013

ISSN: 1064-8275,1095-7197

DOI: 10.1137/120899108